VECTOR CALCULUS, PARTIAL DIFFERENTIAL EQUATIONS and TESTING OF HYPOTHESIS [ENGINEERING MATHEMATICS – IV]

[ECE Only]

[R-20 Regulation]

ECE 221	Credits:3
Instruction: 3 Periods & 1 E/week	Sessional Marks:40
End Exam: 3 Hours	End Exam Marks:60

Pre -requisites: Basic concepts of Vector Algebra, differentiation, Partial differentiation, Integration and Probability.

Course Outcomes: By the end of the course, the student will be able to do

1.	Explain the characteristics of scalar and vector valued functions and provide a
	physical interpretation of the gradient, divergence, curl and related concepts.
2.	Transform line integral to surface integral, surface to volume integral and vice versa
	using Green's theorem, Stoke's theorem and Gauss's divergence theorem.
3.	Explain analytical methods for solving PDEs like applying Separation of Variables to
	solve elementary problems in linear second order Partial Differential Equations(Heat
	and Wave equations).
4.	Find numerical solution of ordinary differential equations.
5.	Analyze the statistical data by using statistical tests and to draw valid inferences about
	the population parameters.

CO – PO Mapping :

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2										1
CO-2	3	2										1
CO-3	3	2										1
CO-4	3	2										1
CO-5	3	2										1

SYLLABUS

UNIT - I: VECTOR DIFFERENTIATION

Scalar and vector point functions – Del applied to scalar point functions – Directional derivative – Del applied to vector point functions – Physical interpretation of divergence and curl – Del applied twice to point functions – Del applied to products of point functions.

Sections: 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9.

UNIT - II: VECTOR INTEGRATION

Integration of vectors – Line integral ,Circulation, work done – Surface integral , flux – Green's theorem in the plane – Stoke's theorem – Volume integral – Gauss divergence theorem (all theorems without proofs) – Irrotational and solenoidal fields.

Sections: 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16 and 8.18.

UNIT - III: PARTIAL DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS [12 Periods]

Introduction – Formation of partial differential equations by eliminating arbitrary constants and functions – Solutions of a partial differential equations by direct Integration – Linear equations of the first order (Lagrange's linear equations).

Applications: Method of separation of variables – Vibrations of a stretched string: Wave equation - One dimensional heat flow equation $(\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2})$, and two dimensional heat flow equation (i.e. Laplace equation : $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$).

Sections: 17.1, 17.2, 17.4, 17.5, 18.2, 18.4, 18.5, 18. 6 and 18. 7.

UNIT - IV: NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL

EQUATIONS

[12 Periods]

Picard's method – Taylor's series method – Euler's method, Runge - Kutta method, Predictor - Corrector methods, Milne's method.

Sections: 32.1,32.2,32.3,32.4,32.7,32.8 and 32.9

[12 Periods]

[12 Periods]

UNIT - V: TESTING OF HYPOTHESIS

Introduction – Sampling distribution – Testing a hypothesis – Level of significance – Confidence limits – Test of Significance of Large samples (Test of significance of single mean, difference of means.) – Confidence limits for unknown mean – Small samples – Students t-distribution – Significance test of a sample mean – Significance test of difference between sample means – chi square test – Goodness of fit.

Sections:27.1, 27.2, 27.3, 27.4, 27.5, 27.11, 27.12, 27.13, 27.14, 27.15, 26.16, 27.17 and 27.18.

TEXT BOOK:

B. S. Grewal, *Higher Engineering Mathematics*, 43rd edition, Khanna publishers, 2017.

REFERENCE BOOKS:

1, N P. Bali and Manish Goyal, A text book of Engineering mathematics, Laxmi publications,

Latest edition.

- Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, John Wiley & Sons, 2011.
- R. K. Jain and S. R. K. Iyengar, *Advanced Engineering Mathematics*, 3rdedition, Alpha Science International Ltd., 2002.
- 4. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, *Calculus*, 13thedition, Pearson Publishers.