ENGINEERING MATHEMATICS – I

MATRIX ALGEBRA & MULTIVARIABLE CALCULUS

I/IV B.Tech. I – Semester

[R-20 Regulation]

[Common for ALL Branches] Credits:3 Instruction: 3 Periods & 1 E/week Sessional Marks:40 End Exam: 3 Hours End Exam Marks:60

Course Objective:

To provide the students with sufficient knowledge in calculus and matrix algebra,

this can be used in their respective fields.

Course Outcomes : At the end of the course the student will be able to

1	Apply elementary transformations to reduce the matrix into the echelon form and normal form								
	to determine its rank and interpret the various solutions of system of linear equations.								
2	Identify the special properties of a matrix such as the eigen value, eigen vector, employ								
	orthogonal transformations to express the matrix into diagonal form, quadratic form and								
	canonical form.								
3	Equip themselves familiar with the functions of several variables and mean value theorems.								
4	Evaluate double and triple integrals techniques over a region in two dimensional and three								
	dimensional geometry.								
5	Familiarize with special functions to evaluate some proper and improper integrals using Beta								
	and Gamma functions.								

CO – PO Mapping :

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
<u> </u>	2	2	2									1
0-1	3	2	2									I
CO-2	3	2	2									1
CO-3	3	2	-									1
CO-4	3	2	-									1
CO-5	3	2	-									1

SYLLABUS

UNIT – I: LINEAR EQUATIONS

Rank of matrix – Normal form of a matrix – PAQ form – Gauss Jordan method of finding the inverse – Consistency of linear system of equations.

Learning outcome: At the end of this unit, student will be able to solve the system of equations using the rank.

UNIT – II: LINEAR TRANSFORMATIONS AND QUADRATIC FORMS [14 Hrs]

Linear transformations – Orthogonal transformations – Vectors (linearly independent & dependent) – Eigen values – Eigen vectors – Properties of eigen values – Cayley-Hamilton theorem (without proof) – Reduction to diagonal form – Reduction of quadratic form to canonical form – Nature of the Quadratic form.

Learning outcome: At the end of this unit, student will be able to identify the special properties of a matrix such as the eigen values, eigen vectors, diagonal form and nature of the quadratic forms.

UNIT – III: SINGLE AND MULTI VARIABLE CALCULUS [12 Hrs]

Rolle's theorem – Lagrange's mean value theorem – Cauchy's mean value theorem (All theorems without proof).

Partial derivatives – Total derivatives – Chain rule – Change of variables – Jacobians – Taylor's series expansion of two variable function – Maxima and minima of functions of two variables – Method of Lagrange's multipliers.

Learning outcome: At the end of this unit, student will be able to

- 1. Analyze the behavior of functions by using mean value theorems.
- 2. Estimate the maxima and minima of multivariable functions.

UNIT – IV: MULTIPLE INTEGRALS

Double integrals – Change of order of integration – Double integration in polar coordinates – Areas enclosed by plane curves – Evaluation of triple integrals – Volumes of solids – Change of variables between cartesian – Cylindrical and spherical polar coordinates – Calculation of mass – Center of gravity.

[14 Hrs]

Learning outcome: At the end of this unit, the student will be able to

- 1. Evaluate double integrals of functions of several variables in two dimensions using cartesian and polar coordinates.
- 2. Apply double and triple integration techniques in evaluating areas and volumes bounded by a region.

UNIT – V: SPECIAL FUNCTIONS

Beta and Gamma functions and their properties – Relation between Beta and Gamma functions – Evaluation of double and triple integrals by using Beta and Gamma functions – Error function.

Learning outcome: At the end of this unit, the student will be able to conclude the use of special functions in multiple integrals.

TEXT BOOKS:

- 1. B. S. Grewal, "Higher Engineering Mathematics", 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10/e, John Wiley\& Sons, 2011.

REFERENCES:

- 1. N. P. Bali, "Engineering Mathematics", Lakshmi Publications.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 13/e, Pearson Publishers, 2013.
- 3. H. K. Dass, "Advanced Engineering Mathematics", S. Chand and company Pvt. Ltd.
- 4. Michael Greenberg, "Advanced Engineering Mathematics", Pearson, Second Edition.

[10 Hrs]