DISCRETE MATHEMATICAL STRUCTURES [Common to CSE , CSD, CSM \& I.T.]
 [R-20 Regulation]

Prerequisites: Elementary knowledge of Set theory, Matrices and Algebra.

Course Objective :

The main objectives of the course are to:

- Introduce concepts of mathematical logic for analyzing propositions and proving theorems.
- Use sets for solving applied problems binary relations and introduce concepts of algebraic structures
- Work with an ability to solve problems in Combinatorics
- Solve problems involving recurrence relations and generating functions.
- Introduce basic concepts of graphs, digraphs and trees

Course Outcomes: At the end of the course student should be able to do

1	Understand mathematical logic, mathematical reasoning and to study about the validity of the arguments and also prove mathematical theorems using mathematical induction.
2	Determine properties of binary relations; identify equivalence and partial order relations, sketch relations and Familiarize with algebraic structures.
3	Apply counting techniques to solve combinatorial problems and identify, formulate, and solve computational problems in various fields.
4	Understand Recurrence Relation, Generating functions and solving problems Involving recurrence equations.
5	Familiarize with the applications of graphs , trees and algorithms on minimal spanning tress and apply graph theory in solving computing problems

CO - PO Mapping :

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2										1
CO-2	3	2										1
CO-3	3	2										1
CO-4	3	2										1
CO-5	3	2										1

SYLLABUS

UNIT - I: MATHEMATICAL LOGIC

(12 Periods)
Fundamentals of logic - Logical inferences - Methods of proof of implication - First order logic and other proof methods - Rules of inference for quantified propositions - Mathematical induction.

Sections: 1.5 to 1.10 of Text book [1].

UNIT - II: RELATIONS AND ALGEBRAIC SYSTEMS
(12 Periods)
RELATIONS: Cartesian products of sets - Relations - Properties of binary relations in a set Relation matrix and graph of a relation - Partition and covering of set - Equivalence relations Composition of binary relations - Transitive closure of a relation - Partial ordering - Partially ordered set.

Sections: 2-1.9, 2-3.1 to 2-3.5, 2-3.7, 2-3.8, 2-3.9 of Text book [2].

ALGEBRAIC SYSTEMS: Definitions and simple examples on Semi groups - Monoids - Group

- Ring and Fields.

Sections: 3-1.1, 3-2.1,3-2.2, 3-5.1,3-5.11 and 3-5.12 of Text book [2].

UNIT - III: ELEMENTARY COMBINATORICS

Basics of counting - Combinations and permutations - Their enumeration with and without repetition - Binomial coefficients - Binomial and multinomial theorems - The principle of inclusion and exclusion.

Sections: 2.1 to 2.8 of Text book [1].

UNIT - IV: RECURRENCE RELATIONS

Generating functions of sequences - Calculating their coefficients - Recurrence relations Solving recurrence relations - Method of characteristic roots - Non-homogeneous recurrence relations and their solutions.

Sections: 3.1 to 3.6 of Text book [1].

UNIT - V: GRAPHS

(16 Periods)
Introduction to graphs - Types of graphs - Graphs basic terminology and special types of simple graphs - Representation of graphs and graph isomorphism - Euler paths and circuits - Hamilton paths and circuits - Planar graphs - Euler's formula.

Introduction to trees and their properties - Spanning trees - Minimum spanning trees Kruskal's algorithm .

Sections: 5.1 to $5.4,5.7,5.8,5.9$, and 5.10 of Text book [1].

TEXT BOOKS:

1). Joe L. Mott, Abraham Kandel \& T. P. Baker, Discrete Mathematics for computer scientists \& Mathematicians, Prentice Hall of India Ltd, New Delhi., 2008
2). J. P. Tremblay, R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw-Hill Publishing Company Limited, 1997

REFERENCE BOOKS:

1. Keneth. H. Rosen, Discrete Mathematics and its Applications, 6/e, Tata McGraw-Hill, 2009.
2. Richard Johnsonburg, Discrete mathematics, 7/e, Pearson Education, 2008.
