ENGINEERING MATHEMATICS – I

MATRIX ALGEBRA & MULTIVARIABLE CALCULUS

I/IV B.Tech. I – Semester

[R-19 Regulation]

[Common for ALL Branches]

	Credits:3
Instruction: 3 Periods & 1 E/week	Sessional Marks:40
End Exam: 3 Hours	End Exam Marks:60

Course Objective:

To provide the students with sufficient knowledge in calculus and matrix algebra, this can be used in their respective fields.

Course Outcomes: At the end of the course the student will be able to

1	Apply elementary transformations to reduce the matrix into the echelon form and normal form
	to determine its rank and interpret the various solutions of system of linear equations.
2	Identify the special properties of a matrix such as the eigen value, eigen vector, employ
	orthogonal transformations to express the matrix into diagonal form, quadratic form and
	canonical form.
3	Equip themselves familiar with the functions of several variables and mean value theorems.
4	Evaluate double and triple integrals techniques over a region in two dimensional and three
	dimensional geometry.
5	Familiarize with special functions to evaluate some proper and improper integrals using Beta
	and Gamma functions.

CO-PO Mapping:

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2	-	-								1
CO-2	3	2	-	-								1
CO-3	3	2	1	-								1
CO-4	3	2	1	-								1
CO-5	3	2	1	1								1

SYLLABUS

UNIT – I: LINEAR EQUATIONS

[10 Hrs]

Rank of matrix - Normal form of a matrix - PAQ form - Gauss Jordan method of finding the inverse - Consistency of linear system of equations.

Learning outcome: At the end of this unit, student will be able to solve the system of equations using the rank.

UNIT – II: LINEAR TRANSFORMATIONS AND QUADRATIC FORMS [14 Hrs]

Linear transformations – Orthogonal transformations – Vectors (linearly independent & dependent) – Eigen values – Eigen vectors – Properties of eigen values – Cayley-Hamilton theorem (without proof) – Reduction to diagonal form – Reduction of quadratic form to canonical form – Nature of the Quadratic form.

Learning outcome: At the end of this unit, student will be able to identify the special properties of a matrix such as the eigen values, eigen vectors, diagonal form and nature of the quadratic forms.

UNIT – III: SINGLE AND MULTI VARIABLE CALCULUS

[12 Hrs]

Rolle's theorem – Lagrange's mean value theorem – Cauchy's mean value theorem (All theorems without proof).

Partial derivatives — Total derivatives — Chain rule — Change of variables — Jacobians — Taylor's series expansion of two variable function — Maxima and minima of functions of two variables — Method of Lagrange's multipliers.

Learning outcome: At the end of this unit, student will be able to

- 1. Analyze the behavior of functions by using mean value theorems.
- 2. Estimate the maxima and minima of multivariable functions.

UNIT - IV: MULTIPLE INTEGRALS

[14 Hrs]

Double integrals – Change of order of integration – Double integration in polar coordinates – Areas enclosed by plane curves – Evaluation of triple integrals – Volumes of solids – Change of variables between cartesian – Cylindrical and spherical polar coordinates – Calculation of mass – Center of gravity.

Learning outcome: At the end of this unit, the student will be able to

- 1. Evaluate double integrals of functions of several variables in two dimensions using cartesian and polar coordinates.
- 2. Apply double and triple integration techniques in evaluating areas and volumes bounded by a region.

UNIT – V: SPECIAL FUNCTIONS

[10 Hrs]

Beta and Gamma functions and their properties – Relation between Beta and Gamma functions – Evaluation of double and triple integrals by using Beta and Gamma functions – Error function.

Learning outcome: At the end of this unit, the student will be able to conclude the use of special functions in multiple integrals.

TEXT BOOKS:

- 1. **B. S. Grewal**, "Higher Engineering Mathematics", 44/e, Khanna Publishers, 2017.
- 2. **Erwin Kreyszig**, "Advanced Engineering Mathematics", 10/e, John Wiley\& Sons, 2011.

REFERENCES:

- 1. **N. P. Bali,** "Engineering Mathematics", Lakshmi Publications.
- 2. **George B. Thomas, Maurice D. Weir and Joel Hass, "***Thomas Calculus*", 13/e, Pearson Publishers, 2013.
- 3. **H. K. Dass**, "Advanced Engineering Mathematics", S. Chand and company Pvt. Ltd.
- 4. **Michael Greenberg**, "Advanced Engineering Mathematics", Pearson, Second Edition.