ENGINEERING MATHEMATICS - II

B.Tech. First Year, II - Semester

Common for all branches

[R-15 Regulation]

Credits		Periods		Exam Hrs.	Sessional	Exam Marks	Total Marks	
	Theory	Tutorial	Lab		Marks			
3	3	1	-	3	40	60	100	

Purpose :

To impart analytical ability in solving mathematical problems as applied to the respective branches of Engineering

Course Objectives:

- To impart knowledge in basic concepts of solving linear system of equations.
- To enable the students to study the eigen values and eigen vectors of matrix.
- To introduce the concepts of ordinary differential equations and their applications to engineers.
- To enable the students to solve any higher order differential equations and to solve the differential equations related to simple electric circuits, Newtons law of cooling.
- To introduce the students to Laplace transforms and their applications.

Course Outcomes : At the end of the course, the student will be able to

- 1 Solve linear system equations using of matrix algebra techniques.
- 2 Determine the eigen values and vectors of a matrix.
- 3 Apply different techniques in solving differential equations that model engineering problem.
- 4 Use the application of differential equations like simple electric circuits, Newton's law of cooling and to solve any higher order linear ordinary differential equation with constant coefficients.
- 5 Solve linear differential equations and network analysis using Laplace transforms.

CO-PO Mapping :

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2										1
CO-2	3	2										1
CO-3	3	2		1								1
CO-4	3	2		1								1
CO-5	3	2		1								1

SYLLABUS

UNIT – I: LINEAR ALGEBRA

Rank of matrix – Elementary transformation of a matrix – Gauss Jordan method of finding the inverse – Normal form of the matrix – PAQ form – Consistency of linear system of equations – System of homogeneous and non-homogeneous equations.

UNIT – II : LINEAR TRANSFORMATIONS & CANONICAL FORMS (12 Periods)

Linear transformations – Orthogonal transformations – Vectors (Linearly independent & dependent) – Eigen values – Eigen vectors – Properties of eigen values – Cayley-Hamilton theorem (without proof) – Reduction to diagonal form – Reduction of quadratic form to canonical form – Nature of quadratic form,.

UNIT – III : DIFFERENTIAL EQUATIONS OF FIRST ORDER AND ITS APPLICATIONS (10 Periods)

First order Linear differential equations – Bernoulli's equations – Exact differential equations – Equations reducible to exact equations – Orthogonal trajectories – Simple electric circuits – Newton law of cooling.

UNIT – IV: HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS (10 Periods)

 $\label{eq:linear} Definitions-Rules \mbox{ for finding the complementary function}-Rules \mbox{ for finding the particular integral}-Method of variation of parameters-Equations reducible to linear equations with constant coefficient - Cauchy's homogeneous linear equation - Legendre's linear equation.$

UNIT – V : LAPLACE TRANSFORMS

Introduction – Definitions – Transforms of elementary functions – Properties of Laplace transforms – Transforms of periodic functions – Transforms of derivatives – Transforms of integrals – Multiplication by t^n – division by t – Evaluation of integrals by Laplace transforms. Inverse Laplace transforms – Other methods of finding inverse transforms (Excluding Residue method) Convolution theorem – Application's to Differential equations – Unit step function – Unit impulsive functions.

TEXT BOOK:

1. **Dr. B.S. Grewal**, *"Higher Engineering Mathematics"*, 43rd edition, Khanna Publishers, New Dehli.

REFERENCE BOOKS:

- 1. Dr. N.P. Bali, Dr. Ashok Saxena, Dr. N.Ch. S. Narayana, "A Text book on Engineering Mathematics", Laxmi Publications (P)Ltd., New Delhi.
- 2. H. K. Dass, "Advanced Engineering Mathematics", S. Chand and Company Ltd.
- 3. **Dr. M. K. Venkataraman**, *"Higher Engineering Mathematics"*, National Publications Co. Madras.
- 4. Erwin Kreyszig. "Advanced Engineering Mathematics", John Wiley and Sons, New York.

(11 Periods)

(17 Periods)