ENGINEERING MATHEMATICS - II

B.Tech. First Year, II - Semester
 Common for all branches

[R-15 Regulation]

Credits	Periods			Exam Hrs.	Sessional Marks	Exam Marks	Total Marks
	Theory	Tutorial	Lab				
3	3	1	-	3	40	60	100

Purpose:

To impart analytical ability in solving mathematical problems as applied to the respective branches of Engineering

Course Objectives:

- To impart knowledge in basic concepts of solving linear system of equations.
- To enable the students to study the eigen values and eigen vectors of matrix.
- To introduce the concepts of ordinary differential equations and their applications to engineers.
- To enable the students to solve any higher order differential equations and to solve the differential equations related to simple electric circuits, Newtons law of cooling.
- To introduce the students to Laplace transforms and their applications.

Course Outcomes : At the end of the course, the student will be able to	
$\mathbf{1}$	Solve linear system equations using of matrix algebra techniques.
$\mathbf{2}$	Determine the eigen values and vectors of a matrix.
$\mathbf{3}$	Apply different techniques in solving differential equations that model engineering problem.
$\mathbf{4}$	Use the application of differential equations like simple electric circuits, Newton's law of cooling and to solve any higher order linear ordinary differential equation with constant coefficients.
$\mathbf{5}$	Solve linear differential equations and network analysis using Laplace transforms.

CO-PO Mapping :

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2										1
CO-2	3	2										1
CO-3	3	2		1								1
CO-4	3	2		1								1
CO-5	3	2		1								1

Rank of matrix - Elementary transformation of a matrix - Gauss Jordan method of finding the inverse - Normal form of the matrix - PAQ form - Consistency of linear system of equations - System of homogeneous and non- homogeneous equations.

UNIT - II : LINEAR TRANSFORMATIONS \& CANONICAL FORMS

Linear transformations - Orthogonal transformations - Vectors (Linearly independent \& dependent) - Eigen values - Eigen vectors - Properties of eigen values - CayleyHamilton theorem (without proof) - Reduction to diagonal form - Reduction of quadratic form to canonical form - Nature of quadratic form,.

UNIT - III : DIFFERENTIAL EQUATIONS OF FIRST ORDER AND ITS APPLICATIONS
 (10 Periods)

First order Linear differential equations - Bernoulli's equations - Exact differential equations - Equations reducible to exact equations - Orthogonal trajectories Simple electric circuits - Newton law of cooling.

UNIT - IV: HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

(10 Periods)
Definitions - Rules for finding the complementary function - Rules for finding the particular integral - Method of variation of parameters - Equations reducible to linear equations with constant coefficient - Cauchy's homogeneous linear equation - Legendre's linear equation.

UNIT - V : LAPLACE TRANSFORMS

Introduction - Definitions - Transforms of elementary functions - Properties of Laplace transforms - Transforms of periodic functions - Transforms of derivatives Transforms of integrals - Multiplication by $t^{n}-$ division by t - Evaluation of integrals by Laplace transforms. Inverse Laplace transforms - Other methods of finding inverse transforms (Excluding Residue method) Convolution theorem - Application's to Differential equations Unit step function - Unit impulsive functions.

TEXT BOOK:

1. Dr. B.S. Grewal, "Higher Engineering Mathematics", $43^{\text {rd }}$ edition, Khanna Publishers, New Dehli.

REFERENCE BOOKS:

1. Dr. N.P. Bali, Dr. Ashok Saxena, Dr. N.Ch. S. Narayana, "A Text book on Engineering Mathematics", Laxmi Publications (P)Ltd., New Delhi.
2. H. K. Dass, "Advanced Engineering Mathematics", S. Chand and Company Ltd.
3. Dr. M. K. Venkataraman, "Higher Engineering Mathematics", National Publications Co. Madras.
4. Erwin Kreyszig. "Advanced Engineering Mathematics", John Wiley and Sons, New York.
